Avalon School

 Parent Mathsworkshop 19 October 2016

Aims of this evening:

- To look at how we teach Maths across the school.
- Address some misconceptions
- Find out how parents can support with homework.
- Look at new ways of approaching Maths
- Curriculum 2014

Some parental feedback

- Oh I don't do the maths - I leave it to my wife / husband. I do the English.
- What is wrong with the way we were taught?
- I am scared of doing the wrong thing.
- Some of the methods are ridiculous - take far too long.
- What is the point in chunking? I did it the proper way and I'm fine:
- Is it "on the doorstep? carry? borrow?"

Part 1 - Mental maths

- Difference between pure mental maths and mental maths with jottings.
- Written methods as a fall back?
- Counting on fingers?
- No wrong ways, just more efficient strategies

Try these

- Explain to the person next to you, how you would approach these questions.
- 64 + 77
- 34 + 98
- There are some efficient methods available here!

Partitioning

- A very useful method that we use a great deal.
- 64 + 77
- It does not matter if we start with $4+7$ or $60+$ 70, but convention tells us that we should start with the units.
- $4+7=11$ (write on your board)
- $6+7=13$ so $60+70=130$
- Bring it back together with your 11
- 141

Near multiples of 10

- Again, a very useful method that we use a great deal.
- $34+98$
- The nearest multiple of 10 is 100 , so we add 100 and "pay two back"
- $34+100=134$
- $134-2$ = 132
- Children need to understand place value well

Subtraction

- Demonstrate to a partner how you would subtract these
- 76-12
- 95-29
- There are, like with the addition, some efficient methods.

Partitioning

- 76-12
- We would take away 10 , then take away 2. Some children may do take away 2 , take away 10

Near multiples of 10

- 95-29
- We would encourage the children to take away 30 and "pay one back"
- $95-30=65$
- $65+1$ = 66 (because we took 1 too many)

Multiplication and Division

- Tell your partner how you might do these
- 13×6
- 65 + 8

Multiplication

- 13×6
- Again, mentally, we use partitioning
- $3 \times 6=18$
- $10 \times 6=60$
- Total $=78$

Division

- 65 - 8
- No real trick to this, only knowing tables
- $8 \times$? $=$ close to 65 ?
- I know $8 \times 8=64$
- So the answer is 8 r 1

Part 2 - written maths

- Importance of written methods v mental methods
- The dangers of using an "efficient" method too soon.
- Place value and mental methods are key
- Estimating

Why use written maths

- To aid mental calculation by writing down some of the numbers and answers involved
- To make clear a mental procedure for the pupil
- To help communicate methods and solutions
- To provide a record of work to be done
- To aid calculation when the problem is too difficult to be done mentally
- To develop and refine a set of rules for calculations

Would you use mental methods or written methods for these? Discuss with your partner.
24×50
24×4
24×15
136×9

Would you use mental methods or written methods for these? Discuss with your partner.
$24 \times 50=(24 \times 100) \div 2 ? \times 5 \times 10 ?$
$24 \times 4=$ double and double again?
$24 \times 15=\times 10$, then halve, add two together? Partitioning?
$136 \times 9=(136 \times 10)-136$ or
partitioning?

Written addition - number line

$$
\begin{aligned}
& 38+86=124= \\
& +30
\end{aligned}
$$

Written addition - expanded

$$
\begin{array}{rrr} 400 \quad 60 & 6 \\ +300 \quad 50 & 8 \\ \hline 700110 \quad 14 \\ \hline \end{array}
$$

 40060

 40060

 6

 6

 $+30050$

 $+30050$

 8

 8

 70011014

 70011014}Written addition - compacted
3

Written subtraction - using a numberline to find the difference

Written subtraction - expanded

$$
\begin{gathered}
47-24=23 \\
-40+7 \\
-20+4 \\
\hline 20+3 \\
\hline
\end{gathered}
$$

Written subtraction - expanded with exchange

$$
\begin{aligned}
& 73-48=25 \\
& 60+3 \\
& -70+3 \\
& -\frac{40+8}{20+5} \\
& \hline
\end{aligned}
$$

Written subtraction - compacted with exchange

Avalon

Written multiplication - grid

Written short multiplication (expanded)

$$
\begin{array}{r}
253 \\
\times \quad 6 \\
\hline 18 \\
1200 \\
\hline 1518 \\
\hline
\end{array}
$$

Written short multiplication

Written long multiplication

Division with chunking

$$
\begin{aligned}
5 \begin{array}{r}
73 \\
-\frac{50}{23}
\end{array} & (\underline{10} \times 5) \\
\frac{-20}{3} & (\underline{4} \times 5)
\end{aligned}
$$

Written short division

Written long division - chunking

$$
\begin{gathered}
196 \div 6=32 \text { r } 4 \\
H T U \\
6 \longdiv { 1 9 6 }
\end{gathered}
$$

$$
60-\quad(10 \times 6)
$$

$$
136
$$

$$
60-\quad(10 \times 6)
$$

$$
76
$$

$$
60-\quad(10 \times 6)
$$

$$
16
$$

$$
12-(2 \times 6)
$$

Written long division

$$
\begin{aligned}
& \frac{117}{36} \begin{array}{l}
4229 \\
-\frac{36}{62} \\
-\frac{36}{269} \\
-\frac{252}{17}
\end{array}
\end{aligned}
$$

In practice

- SATS papers and Secondary schools are looking for conceptual ability, flexibility and application
- 3 aims of the new curriculum are "fluency" with number, "reasoning mathematically" and "solving problems".
- Recommendation is that we don't push children on to next level of a topic, but that we challenge them to use and apply their learning flexibly and creatively.

In practice

- 60% of entrance exam questions require instant recall of multiplication facts in order to solve them quickly enough
- The most effective way to learn tables is to practise them little and often in a variety of ways in order to sustain motivation: board games, Apps, competitions (especially with parents!), songs, posters etc.

